If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5x-62=0
a = 3; b = -5; c = -62;
Δ = b2-4ac
Δ = -52-4·3·(-62)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{769}}{2*3}=\frac{5-\sqrt{769}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{769}}{2*3}=\frac{5+\sqrt{769}}{6} $
| 2x(4−x)−1/2−54−x =0 | | -t+5=0 | | 6–f=-2f–9+4f | | 6=8+2v | | 3|x-5|-2|-x-2|=5 | | x+6x-20=2x+8 | | 4-6y=7-7y | | 2(x+2)+3(x+4=31 | | -2(j-7)=-4 | | 4•(y•+6)=4•y | | 3-2(x2)=8 | | A(n)=1+(n-1)(5.7) | | 1/12=1/30+1/r | | u+2=16 | | -7n-5n=24 | | y+5(y-4)-20=2(-6+4y) | | 4y-4y=-24 | | F(x)=1/3x2 | | 4=m-3+5 | | n+5/5=-3 | | 12k+5.5=k+18 | | -4=3(j-6)-7 | | Y=(-2)/1*(x+1)/3 | | -4=3(j | | 9x+43=7 | | 450=25x2+50x | | r+3r+2=18 | | 17x-3=0 | | -5+x/6=-3 | | 4-(3x-5)=6-(2×+7) | | 4-q=3 | | 2x2+16x+21=0 |